
Unidad IV: Generación de código objeto

4.1 Registro

Los registros son la memoria principal de la computadora. Existen diversos

registros de propósito general y otros de uso exclusivo.

Algunos registros de propósito general son utilizados para cierto tipo de funciones.

Existen registros acumuladores, puntero de instrucción, de pila, etc.

Distribución

La distribución es el proceso en el que el programa generado puede ejecutarse en

otras máquinas.

Con respecto al ensamblador, la mayoría del direccionamiento se hace relativo

para que el programa sea relocalizable por un programa llamado cargador.

En el caso de programas compilados se necesitan de las librerías, si son estáticas

se incluyen en el ejecutable por lo que el programa se hace gráfico, si son

dinámicas no pero el programa es más pequeño.

Debido a la complejidad del software actual se necesitan de asistentes para poder

instalar y ejecutar un programa.

Operar sobre registros es más rápido y eficiente que operar sobre memoria. Por

ello, la adjudicación eficiente de registros tiene un gran impacto en la performance.

El uso de registros puede dividirse en dos subproblemas:

– Durante la reserva de registros (allocation), se seleccionan el conjunto de

variables que vivirá en registros en un punto del programa.

– Durante la (posterior) asignación de registros (assignation), se elige el registro

específico para cada variable.

4.2 Lenguaje ensamblador

El ensamblador (del inglés assembler) es un traductor de un código de bajo nivel a

un código, ejecutable directamente por la máquina para la que se ha generado.

Fue la primera abstracción de un lenguaje de programación, posteriormente

aparecieron los compiladores.

Características

• El programa lee un archivo escrito en lenguaje ensamblador y sustituye

cada uno de los códigos mnemotécnicos por su equivalente código

máquina.

• Los programas se hacen fácilmente portables de máquina a máquina y el

cálculo de bifurcaciones se hace de manera fácil.

Ensambladores

Ensambladores básicos: Son de muy bajo nivel, y su tarea consiste básicamente

en ofrecer nombres simbólicos a las distintas instrucciones, parámetros y cosas

tales como los modos de direccionamiento.

Ensambladores modulares, o macro ensambladores: Descendientes de los

ensambladores básicos, fueron muy populares en las décadas de los 50 y los 60,

antes de la generalización de los lenguajes de alto nivel. Un macroinstrucción es el

equivalente a una función en un lenguaje de alto nivel.

Almacenamiento

Una de las principales ventajas del uso del ensamblador, es que se encarga de

administrar de manera transparente para el usuario la creación de memoria, las

bifurcaciones y el paso de parámetros. • Además nos permite acceder

directamente a los recursos de la máquina para un mejor desempeño.

4.3 Lenguaje máquina

El lenguaje máquina sólo es entendible por las computadoras. Se basa en una

lógica binaria de 0 y 1, generalmente implementada por mecanismos eléctricos.

En general el lenguaje máquina es difícil de entender para los humanos por este

motivo hacemos uso de lenguajes más parecidos a los lenguajes naturales.

Características

• El lenguaje máquina realiza un conjunto de operaciones predeterminadas

llamadas microoperaciones.

• Las microoperaciones sólo realizan operaciones del tipo aritmética (+,-,*, /),

lógicas (AND, OR, NOT) y de control (secuencial, decisión, repetitiva).

• El lenguaje máquina es dependiente del tipo de arquitectura. Así un

programa máquina para una arquitectura Intel x86 no se ejecutará en una

arquitectura Power PC de IBM (al menos de manera nativa).

• Algunos microprocesadores implementan más funcionalidades llamado

CISC, pero son más lentos que los RISC ya que estos tienen registros más

grandes.

Direccionamiento

Es la forma en cómo se accede a la memoria. Recordar que un programa no

puede ejecutarse sino se encuentra en memoria principal. La forma de acceder a

la memoria depende del microprocesador, pero en general existen dos tipos de

direccionamiento: directo e indirecto.

El direccionamiento directo también recibe el nombre de direccionamiento

absoluto y el acceso a las direcciones se hace de manera directa. El

direccionamiento indirecto también recibe el nombre de direccionamiento relativo y

se basa a partir de una dirección genérica, generalmente el inicio del programa.

Para acceder a una dirección relativa se suma a la dirección base el número de

espacios de memorias necesarias.

El direccionamiento relativo hace a los programas relocalizables e independientes.

Si la dirección base es el inicio de la memoria fija el direccionamiento pasa a ser

un variante de direccionamiento absoluto.

4.4 Administración de memoria

Consiste en determinar la posición de memoria en la que los diferentes símbolos

del programa almacenan la información

Depende de la estrategia utilizada para la gestión de memoria, el mecanismo

puede variar.

La administración de la memoria es un proceso hoy en día muy importante, de tal

modo que su mal o buen uso tiene una acción directa sobre el desempeño de

memoria.

En general un ensamblador tiene un administrador de memoria más limitado que

un compilador.

En la mayoría de los lenguajes de programación el uso de punteros no estaba

vigilado por lo que se tienen muchos problemas con el uso de memoria. Los

lenguajes más recientes controlan el uso de punteros y tienen un programa

denominado recolector de basura que se encarga de limpiar la memoria no

utilizada mejorando el desempeño.

